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ABSTRACT 

 Understanding the complex folding patterns on cerebral cortex has been of great 

interest and importance. As a typical brain anatomical pattern on gyri, 3-hinge gyral joint 

introduces a novel way to analyze cortical folding patterns in terms of gyral hinge 

numbers. In fact, 3-hinges are of unique structural and functional importance in terms of 

structural and functional features, brain development and brain evolution and has the 

potential to determine inter-subject or even inter-species correspondence. A variety of 

recent studies have demonstrated the distinct anatomical characteristics of 3-hinge gyral 

joints compared to other gyral regions, like its thicker cortices and it has more diverse 

connected fibers’ end orientations. However, the mechanism of 3-hinge gyri formation 

and its potentially different functional role have been rarely explored so far. To bridge 

this gap, I did some relevant studies from both structural and functional perspective to 

better understand the formation mechanism and the potential functional characteristic of 

3-hinge gyri. 
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CHAPTER 1 

INTRODUCTION 

1. What Is 3-hinge Gyral Joint 

 As we know, one of the most prominent features of human brain lies in the high-

level convolution of cerebral cortex. During brain development, the cerebral cortex 

undergoes substantial folding, leading to intricate arrangements of convex gyri and 

concave sulci [1-4]. Modern magnetic resonance imaging (MRI) techniques enable in 

vivo studies of the cortical folding patterns, which attract growing research interest. As 

an essential characteristic of the human cerebral cortex, the fold has shown quite different 

patterns on even major gyri and sulci across subjects [5-8]. In spite of this great 

variability, the folding pattern of human cortex seems to be closely related to the 

architectonic, connectional and functional specialization of the cortical surface [8]. 

Evidence has also shown that the folding pattern of human cerebral cortex can benefit 

cytoarchitectonic areal parcellation [9], normal maturation and neurodegenerative process 

investigation [10] and abnormal brain development understanding [11]. 

Emerging studies have reported that gyri and sulci exhibit distinct patterns from 

the perspectives of anatomy [12, 13], morphology[14], structural connectivity [15, 16] 

and function [17-20]. For example, microcosmic studies at the cellular level revealed that 

the subventricular zone (a secondary proliferative zone containing neural progenitor 

cells) during embryonic life is thicker in areas underlying gyrus formation and thinner in 

areas underlying sulcus formation [12, 13]. A similar finding in the neocortex of both 
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developing infants and healthy adults is that cortical thickness is significantly thicker at 

the crown of gyri and normally thinner in the depth of sulci [12, 17, 21]. Meanwhile, 

under the mechanical impact of cortical folding, dendritic shapes in deep gyral and sulcal 

layers are different [17]. What’s more, gyri and sulci have different morphologic traits 

during aging process. Gyri become more sharply and steeply curved while the sulci 

become more flattened and less curved [14]. More recently, investigations into the 

neuronal pathways demonstrated that axonal streamline fibers in the human brains tend to 

course horizontally around the sulcal surface but orient tangentially to the gyral surface 

[22-25]. Similar observations suggest that the fiber terminations dominantly concentrate 

on gyri rather than sulci, which is evolutionarily preserved in the cortical architectures of 

primate brains [24, 26]. Joint representation of multimodal neuroimaging data, including 

diffusion tensor imaging and fMRI found that both structural and functional connectivity 

patterns are strong among gyri, weak among sulci, and moderate between gyri and sulci 

[15].  

Taken together, all the above-mentioned studies across multiple disciplines have 

consistently brought insights into fundamental differences between gyri and sulci. 

However, on gyri, there still exists a sub-population with particular convolution pattern 

described by the number of hinges, called 3-hinge gyral folding pattern, which was first 

introduced in our previous studies [8]. Motivated by the mounting findings of gyri and 

sulci differences, in this dissertation, it mainly focuses on the exploration of 3-hinge (one 

of the sub-populations of gyri) and investigates its characteristics in both structural and 

functional aspects. Specifically, a 3-hinge gyral joint is a conjunction of gyri coming 
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from multiple directions, which is also where three gyral crests meet. Exemplar 3-hinge 

gyral joints are represented by colored bubbles as shown in Figure 1.1. 

 

Figure 1.1. Exemplar 3-hinge gyral joints (colored bubbles) visualization. Here, six 

randomly selected 3-hinge gyral joints are zoomed in and their corresponding gyral crests 

can also be visualized. 

 

2. Why is 3-hinge Gyral Joint Important in Brain Analysis 

In fact, 3-hinge gyral joints (“3-hinge” for short sometimes) are of unique 

structural and functional importance in terms of structural and functional features, brain 

development and brain evolution which also have the potential to determine inter-subject 

correspondence. In our previous works, it has been demonstrated that 3-hinges have 

thicker cortices [27] and diversities [28, 29], and are more strongly functionally 

connected compared to other gyral regions [18-20, 30]. In terms of brain development, 

we found in our previous works that the 3-hinges with complicated morphology tend to 
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have more diverse connected fibers’ end orientations [29]. In other words, the orientation 

of fiber terminations closely follows the curvedness of 3-hinge gyral crest. These 

conclusions are in line with our previous works and add new knowledge to our previous 

DTI-based findings that axonal fiber terminations concentrate on gyri. All these findings 

suggest a close relationship between gyrification and axonogensis. In addition, we also 

found some consistent fiber connectivity patterns from the corresponding 3-hinges across 

individuals and species [31]. Recently, a quantitative examination of gyral folding 

patterns across primate species showed that the complexity of 3-hinge gyral folding 

patterns successively expressed from macaque brain to human brain, in which 6 popular 

and cross-species consistent 3-hinge gyral folds in macaque/chimpanzee/ human brains 

were quantitatively identified and characterized, 2 unique 3-hinges in macaque brains, 6 

unique ones in chimpanzee brains and 14 unique ones in human brains [28]. These 

above-mentioned findings suggest that 3-hinge convolutions could be an emergent 

phenomenon necessitated by some underlying function or structure which show the 

promise of analyzing 3-hinge from both structural and functional perspectives. 

As a convoluted surface, the neocortex is usually represented by a reconstructed 

mesh surface, upon which quantitative analyses are performed [32]. The folding pattern 

of human cerebral cortex is a multi-scale concept whose research scope can vary from a 

very small neighborhood to a whole brain cortical surface [8]. The widely used folding 

pattern descriptors in the literature can be classified into two groups – global and local 

descriptors [8]. Global measurements such as surface area [33], gyrification index [34], 

and spherical wavelets [35] quantify the cortical convolution level of the whole brain or 

preselected regions of interest (ROIs). In contrast, local descriptors, such as surface 
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curvature, estimate the cortical folding pattern vertex-wise in a small area. Some recent 

works also extend the global descriptors, such as gyrification index to local scales [36, 

37]. However, 3-hinge can serve as a novel way that combines both advantages of 

parametric method (achieving compact representation of morphology pattern) and surface 

profiling method (achieving flexibility of arbitrary morphology representation) to analyze 

cortical folding patterns in terms of gyral hinge numbers, which is also a good meso-scale 

anatomical landmark since it is relatively easier to identify without ambiguity. Therefore, 

from the methodological perspective, analyzing 3-hinge is of great importance 

considering its methodological advantage and the deep insights it can provide into the 

mechanism of brain development and evolution.  

 

3. How to Identify 3-hinge Gyral Joint 

There are mainly two automatic approaches for identifying 3-hinge gyral joints, 

both of which are used in this dissertation. 

The first approach is based on that proposed in Li’s work [8] which includes two 

rounds of surface profiling. In the first round, all vertices on the surface need to be 

classified into two groups, gyri and sulci. A 3D coordinate system is built for every 

vertex on the cortical surface, as there exists a normal direction as the Z direction, as well 

as a tangent plane represented by a 2D polar coordinate system. The initial direction in 

the polar coordinate system is randomly selected. Then each vertex’s surface patch is 

sampled into 72 evenly distributed spokes from the initial direction. After that a power 

function is applied to fit the model of each spoke. The parameters of the model are 

evaluated in a least-square sense with Levenberg–Marquardt algorithm and the values of 
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these parameters could be used to extract features of any vertex on the surface. These 

features include average ratio, average concave, average convex and sulci or gyri. With 

these extracted features, it can classify each vertex into two categories: gyri or sulci. In 

the second round, an inflated surface is generated by FreeSurfer. The second profile of 

each point is then generated on the inflated surface. For each cortical vertex, the profile 

process is the same as the first profile on the original surface with 72 evenly distributed 

spokes. Each point is projected onto the inflated surface and could be classified to gyri or 

sulci group. The goal is to identify 3-hinge vertex on gyri; therefore, only the profiles of 

vertices on gyri are considered. Then the spokes are classified into two types — either all 

points are on gyri or only part of them are on gyri. For the profile of a vertex, the adjacent 

all-gyri spokes are clustered into a group and the vertex involving three all-gyri spoke 

groups is taken as 3-hinge vertex. Finally, it clusters the adjacent 3-hinge vertices and 

each cluster is taken as 3-hinges. The vertex closest to the center of the cluster is taken as 

the center vertex of 3-hinges. More details and pipeline can be found in Chapter 2, 

Section 3.3. 

The second approach was proposed by Chen’s work recently which developed 

automatic data processing and analysis pipeline that is capable of handling big datasets to 

extract 3-hinges based on a ‘gyral net’ system [32]. Generally, the pipeline includes two 

major steps as illustrated in Figure 1.2: (a) gyral crest segmentation (Figure 1.2 (d)-(e)) 

and (b) gyral crest skeleton extraction (Figure 1.2 (f)). For gyral crest segmentation step, 

it is to segment gyral crest from cortical surfaces. For each surface vertex, it computes its 

gyral altitude defined as the movement in the surface normal direction from its original 

location to the “mid-surface,” a smoothed and inflated mid-line that separates gyri from 
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sulci. Vertices above the “mid-surface” have positive altitude values and otherwise they 

are assigned negative values (Figure 1.2 (d)). Based on gyral altitude, the watershed 

algorithm is adopted to progressively segment the gyral crest (regions over an altitude 

level) from sulcal basins. For gyral crest skeleton extraction step, it is to extract gyral 

crest lines. Based on these lines, the junctions where multiple lines meet were identified 

as the centers of 3-hinges. Generally, gyral skeletons are the crest curves located in the 

central parts of gyri, which are the furthest locations on gyral regions from the borders 

between gyral crests and sulcal basins. Here, the method detailed in [32] is an enhanced 

version of the one in [8]. First, distance transform is conducted on the segmented gyral 

area to highlight the center of gyral crest. Then, the first tree marching starts from the 

local centers of gyral crest and successively connected the vertices to form multiple tree-

shape graphs. After connecting the trees, the redundant branches were pruned and only 

the major branches were left and taken as the skeleton of gyral crest (black curves in 

Figure 1.2 (b)). The skeleton forms a gyral network, vertices on this network with 

degrees equal to 3 are 3-hinge vertices defined as gyral joints. 
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Figure 1.2. Pipelines of the extraction of gyral skeleton and 3-hinge. (a) Cortical surface 

of the white matter/gray matter boundaries. (b) Black curves are the extracted skeleton of 

gyral crest. The cortical surface is color-coded by gyral altitude. Red regions have high 

gyral altitude values while blue regions have low values. (d-f) Steps of extracting gyral 

crest skeleton. Gyral altitude is computed first in (d), based on which cortical surface is 

segmented into gyral crest (black dots in (e)) and sulci. Finally, the gyral crest is 

skeletonized. 

 

4. Contributions 

This dissertation does analyses on both structural and functional characteristics of 

3-hinge gyri. Consequently, its contributions are two folds, in structural and functional 

aspect respectively. 

For the structural analysis of 3-hinge gyri, although previous study has already 

analyzed the regularity and variability of cortical folds across human, chimpanzee and 

macaque brains based on 3-hinge gyral fold descriptor, the possible mechanisms of 

formation of such cross species preserved 3-hinge gyri in primate brains has not been 

explored yet. To bridge this gap, in my experiment, I firstly extracted 3-hinge gyral 

regions in macaque/chimpanzee/human brains, then quantified and compared the relevant 

DTI-derived fiber densities in 3-hinge and 2-hinge gyral regions. According to the initial 

comparison results which consistently show that DTI-derived fiber densities in 3-hinge 

regions are much higher than those in 2-hinge regions, a hypothesis that besides the 

cortical expansion, denser fiber connections can induce the formation of 3-hinge gyri was 

proposed. This hypothesis was also further consolidated by designed computational 
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simulation models later. To summarize, this work (Chapter 2) proposes a plausible theory 

of 3-hinge gyri formation and also provides new insights into structural and functional 

cortical architectures and their relationship. 

For the functional analysis of 3-hinge gyri, considering the strong correlation 

between brain structure and function and motivated by some preliminary findings on the 

different functional roles of gyri and sulci [18-20, 30, 38, 39], 2-hinge and 3-hinge as two 

potential sub-populations on gyri, possible functional differences between them are 

investigated from the perspective of neural activity in Chapter 3 and Chapter 4.  Here, the 

work in Chapter 3 mainly focuses on the exploration of the different functional roles of 

neural activities under resting state in gyral, sulcal, 2-hinge and 3-hinge areas, while the 

work in Chapter 4 is an extension which pays more attention to the improvement of the 

classification model architecture, the methodological contribution of which is the 

AdaNet-based NAS framework. 

 

5. Dissertation Outline 

 

Figure 1.3. Dissertation overview. 
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As illustrated in Figure 1.3, this dissertation mainly contains three parts 

corresponding to Chapters 2-4, respectively. Chapters 2 explores the mechanism of 3-

hinge gyri formation from structural perspective which does a structural analysis of 

cortical 3-hinge gyral joint. Chapters 3-4 investigates the different functional role of 3-

hinge gyri from functional perspective, corresponding to the functional analysis. Chapter 

5 is the conclusions and future work. 
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CHAPTER 2 

DENSER GROWING FIBER CONNECTIONS INDUCE 3-HINGE GYRAL 

FOLDING1 

  

                                                 
1 Fangfei Ge, Xiao Li, Mir Jalil Razavi, Hanbo Chen, Tuo Zhang, Shu Zhang, Lei Guo, Xiaoping Hu, 

Xianqiao Wang and Tianming Liu. "Denser Growing Fiber Connections Induce 3-hinge Gyral Folding." 

Cerebral Cortex 28, no. 3 (2017): 1064-1075. 

Reprinted here with permission of the publisher. 



 

12 

1. Abstract 

In this chapter, I do an advanced analysis on 3-hinge gyral joints from the 

structural perspective which explores the relationship between the axonal fiber 

connection and 3-hinge gyral folding. 

Recent studies have shown that quantitative description of gyral shape patterns 

offers a novel window to examine the relationship between brain structure and function. 

Along this research line, this chapter examines a unique and interesting type of cortical 

gyral region where three different gyral crests meet, termed 3-hinge gyral region. We 

extracted 3-hinge gyral regions in macaque/chimpanzee/human brains, quantified and 

compared the relevant DTI-derived fiber densities in 3-hinge and 2-hinge gyral regions. 

Our observations consistently show that DTI-derived fiber densities in 3-hinge regions 

are much higher than those in 2-hinge regions. Therefore, we hypothesize that beside the 

cortical expansion, denser fiber connections can induce the formation of 3-hinge gyri. In 

order to examine the biomechanical basis of this hypothesis, we constructed a series of 

three-dimensional finite element soft tissue models based on continuum growth theory to 

investigate fundamental biomechanical mechanisms of consistent 3-hinge gyri formation. 

Our computational simulation results consistently show that during gyrification gyral 

regions with higher concentrations of growing axonal fibers tend to form 3-hinge gyri. 

Our integrative approach that combines neuroimaging data analysis and computational 

modeling appears effective in probing a plausible theory of 3-hinge gyri formation and 

providing new insights into structural and functional cortical architectures as well as their 

relationship. 
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2. Background and Motivation 

Convoluted cortical folding is a prominent feature of the primate brains [24, 40]. 

Convolution may arise at multiple stages, primary, secondary and tertiary which occurs 

over a period of several months [41, 42]. Primary folding is notably preserved among 

individuals [43] while secondary and tertiary foldings vary cross individuals and evolve 

after primary folding is completed [44], which it is believed that differential growth of 

the cortex is a possible stimulus for secondary and tertiary folding [45, 46]. 

Neuroscientific studies have demonstrated that neural structures of concave sulci and 

convex gyri emerge from a complex cortical folding process in brain development [3]. It 

has been shown that cortical fold patterns seem to be closely correlated with 

neurodevelopment [27, 47-49], cytoarchitecture [50, 51], and cognitive functioning [52-

55]. Therefore, a quantitative description of complex cortical folding patterns is of 

fundamental importance to understand the underlying structural [6, 56-58] and functional 

[15, 59-61] mechanisms of the brain. Essentially, the folding pattern of human cerebral 

cortex is a multi-scale concept, and therefore the research scope of quantitative 

description of cortical folding can vary from a very small neighborhood on the cortex to 

the entire cortical surface [8]. In previous studies, descriptors proposed for modeling and 

analyzing cortical folding patterns can be classified into two major categories [8]. The 

first one was based on the descriptor of curvature and its derivations [62-64]. The other 

one was a global descriptor, the studies of which usually use tools like gyrification index 

[34, 65], spherical wavelets [35, 66] and intrinsic curvature [67] to quantity the 

convolution level of the whole cortical surface or a preselected regions of interests 

(ROIs). In general, both categories of cortical folding descriptors unveiled interesting 



 

14 

properties of cerebral cortex and helped understand the regularity and variability of the 

complex cerebral cortex. 

Recently, inspired by the work on folding pattern analysis of rocks in geology, Li 

et al proposed a novel way that combined both advantages of parametric method and 

surface profiling method to analyze cortical folding patterns in terms of gyral hinge 

numbers [8]. Basically, as illustrated in Figure 2.1, gyral crests with white curves in 

Figure 2.1 are termed 2-hinge gyri while regions where three 2-hinge gyral crests meet 

are termed 3-hinge gyri as highlighted by the yellow spheres in Figure 2.1. It is worth to 

note [8] that four gyral crests rarely meet to form 4-hinge gyri. Thus, in this chapter, we 

will mainly focus on the discussion of 2-hinge and 3-hinge gyri. Notably, in our recent 

study [40], we quantitatively identified and characterized six popular and cross-species 

consistent 3-hinge gyral folds in macaque/chimpanzee/human brains, two unique 3-

hinges in macaque brains, six unique ones in chimpanzee brains and fourteen unique ones 

in human brains. Our quantitative measurements applied to these 3-hinge gyral folds 

showed the increasing complexity among the primate species we analyzed. However, this 

prior study [40] did not explore the possible mechanisms of formation of such cross-

species preserved 3-hinge gyri in primate brains which is the main objective of this study.  
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Figure 2.1. Illustration of 2-hinge and 3-hinge gyral folds in macaque, chimpanzee and 

human brains. 

Specifically, we first extracted the 3-hinge gyral regions in macaque 

/chimpanzee/human brains by using the automated computational pipeline in [8] Then, 

based on the 3-hinge gyri on the whole cortical surface, we quantified the densities of 

diffusion tensor imaging (DTI) -derived fibers connected to these 3-hinge gyral regions, 

as well as those connected to 2-hinge gyri. Finally, we quantitatively compared the DTI-

derived fiber densities in 3-hinge and 2-hinge gyral regions in the entire 

macaque/chimpanzee/human brains. Our results consistently demonstrate that DTI-

derived fiber densities in 3-hinge gyri are much higher than those in 2-hinge gyri. 

Therefore, we hypothesize that beside the cortical expansion, denser fiber connections 

can induce the formation of 3-hinge gyri. By constructing a series of three-dimensional 

finite element soft tissue models based on continuum growth theory, we investigated 

fundamental biomechanical mechanisms of consistent 3-hinge gyri formation and 

examined the biomechanical basis of this hypothesis. 

 

3. Methods 

 Overview of computational framework 

Basically, there are 4 major computational steps in this work. 1) We modified and 

employed an automatic computational pipeline to identify 2-hinge and 3-hinge gyral 

folding patterns across entire primate brain. 2) We quantified the DTI-derived fiber 

density [25] termed as the number of fibers per unit surface area, over the entire cerebral 

cortex. 3) We derived the DTI-derived fiber densities on the extracted 2-hinge and 3-
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hinge gyral regions, and then performed extensive comparisons between them. 4) We 

designed and constructed a series of computational finite element models to investigate 

the fundamental mechanism of 3-hinge formation. In general, our integrative approach 

which combines neuroimaging data analysis over macaque/chimpanzee/human brains and 

computational simulations provides a unique window to understand the deeply rooted 

regularity of 3-hinge gyri formation and offers a plausible theory that denser growing 

fiber connections induce 3-hinge gyri formation. 

 Data description and preprocessing 

Imaging data of human brains. In this work, DTI images were used to perform 

the reconstruction of cortical surfaces. In total, 64 human brains from the Q1 release of 

WU-Minn Human Connectome Project (HCP) consortium [68] were used in this study, 

and the age range of these subjects is 22-35 years. For T1-weighted structural MRI, the 

scan protocol used a TR=2400ms, TE=2.14ms, flip angle=8deg, image 

matrix=260×311×260 and resolution=0.7×0.7×0.7mm3 . DTI data collected with spin-

echo EPI sequence was acquired using the following parameters: TR=5520ms, 

TE=89.5ms, flip angle=78deg, FOV=210×180, matrix=168×144, 

resolution=1.25×1.25×1.25 mm3 , and echo spacing=0.78ms. Particularly, a full DTI 

session includes 6 runs, representing 3 different gradient tables, with each table acquired 

once with right-to-left and left-to-right phase encoding polarities, respectively. Each 

gradient table includes approximately 90 diffusion weighting directions plus 6 b=0 

acquisitions interspersed throughout each run. Diffusion weighted data consisted of 3 

shells of b=1000, 2000, and 3000s/ mm2  interspersed with an approximately equal 

number of acquisitions on each shell within each run. White matter cortical surface 
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reconstructed using DTI data was based on FA maps via the methods in [69] after 

performing skull removal, motion correction, eddy current correction and tissue 

segmentation based on FSL [70].  

Imaging data of chimpanzees. All the 16 chimpanzee subjects (all females, 

29.4±12.8 years) used here were members of a colony in the Yerkes National Primate 

Research Center (YNPRC) at Emory University in Atlanta, Georgia. All imaging studies 

were approved by the IACUC of Emory University. Prior to scanning, the subjects were 

immobilized with ketamine injections (2−6 mg/kg, i.m.) and were subsequently 

anesthetized with an intravenous propofol drip (10 mg/kg/hr) according to standard 

veterinary procedures used at YNPRC. The subjects remained sedated for the duration of 

the scans as well as the time needed for transportation between their home cage and the 

scanner location. After completing scans, chimpanzees were temporarily housed in a 

single cage for 6 to 12 hours to allow effects of anesthesia to wear off before being 

returned to their home cage and cage mates. The veterinary staff and research staff 

assessed the general well-being (i.e., activity, food intake) of the chimpanzees twice daily 

after the scan for possible distress associated with aesthetic accesses.  

The anatomical MRI scans were performed on a Siemens 3T Trio scanner with a 

standard birdcage coil. Foam cushions and elastic straps were used to minimize head 

motion. T1-weighted MRI images were acquired with a 3D magnetization-prepared rapid 

gradient echo (MPRAGE) sequence for all participants. For subjects scanned using the 

MS-EPI (multi-shot double spin-echo echo planar imaging) sequence, the scan protocol, 

optimized at 3T used a TR=2400ms, TE=4.13ms, flip angle=8 deg, image 

matrix=256×256×192 and resolution=1.0×1.0×0.8mm3 , with 2 averages. For subjects 
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scanned using SS-EPI (single-shot double spin-echo echo planar imaging), the scan 

protocol is similar, despite that the resolution =0.8×0.8×0.8mm3 isotropic. In this study, 

MRI images from 16 female chimpanzees are used. . The preprocessing steps were 

similar to those used in human data processing and the brains of chimpanzees are scaled 

to the same size as human brain. 

Imaging data of macaques. All the 20 macaque subjects (all females, 14±6.7 

years) were members of a colony at YNPRC. All MRI scans were approved by IACUC 

of Emory University. Prior to scanning, the subjects were immobilized with ketamine 

injections (2−6 mg/kg, i.m.) and were subsequently anesthetized with an intravenous 

propofol drip (10 mg/kg/hr) following standard veterinary procedures used at YNPRC. 

The macaques remained sedated for the duration of the scans as well as the time needed 

for transportation between their home cage and the scanner location. After completing 

scans, macaques were temporarily housed in a single cage for 6 to 12 hours to allow the 

effects of anesthesia to wear off before being returned to their home cage and cage mates. 

The veterinary staff and research staff observed the general well-being (i.e., activity, food 

intake) of the macaques twice daily after the scan for possible distress associated with 

anaesthetic accesses.  

The anatomical MRI scans were performed on a Siemens 3T Trio scanner with a 

standard knee oil. To minimize head motion, foam cushions and elastic straps were used 

during the scan. Particularly, a specially designed holding device was used to stabilize 

macaque’s head during scanning with 2 plastic screws anchoring in the macaque’s ear 

canals tightly. The high resolution T1-weighted MRI images were acquired with a 3D 

MPRAGE sequence. The scan protocol used a TR=2500ms, TE=3.49ms, flip angle=8 
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deg, image matrix=256×256×192 and resolution=0.5×0.5×0.5mm3, with 3 averages. In 

this study, MRI images from 20 subjects were used. The preprocessing steps were similar 

to those used in human data processing and the brains of macaques are scaled to the same 

size as human brain. 

 Automatic pipeline for 2-hinge and 3-hinge gyri extraction 

A gyral hinge refers to the region on the top of gyrus with the maximal folding 

curvature. By following and extending our prior work [8], we automatically extracted the 

centers of 3-hinge gyri from these reconstructed cortical surfaces in Section 3.2 [8]. A 

gyral hinge curve can be traced when hinges are connected along a gyral crest and the 

number of hinge curves intersecting together at a cross-point can be used to characterize 

the gyral folding patterns [8]. In order to automatically identify 3-hinge vertices, two 

main steps of surface profiling were proposed and used. Here we take a human brain 

cortical surface as an example to detail the two-step process: 1) classifying vertices into 

two groups, gyri and sulci in Figure 2.2(a)-(d) and 2) finding 3-hinge centers in Figure 

2.2(e)-(i). Firstly, we built a local 3D coordinate system for each vertex on the cortical 

surface. The normal direction of the vertex was considered as the Z direction and a 

tangent plane was represented by a 2D polar coordinate system. Then seventy-two 20mm 

long spokes were allocated from the vertex along the neighboring surface patch. In total, 

20 points were evenly sampled along each spoke. The projections of all spokes on the 

tangent plane were evenly distributed (5 degrees interval). Then a power function was 

expressed as follows to fit the model of each spoke: 

𝑦 = 𝑏 + 𝑦0 (
𝑥

𝑥0
)

𝑛

(2.1) 
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where (𝑥, 𝑦) is the 2D Cartesian coordinate of a profile based on the 2D polar 

coordinate system, 𝑥0, 𝑦0, 𝑏, 𝑛  are parameters of the profile via a least-square fitting 

method. Then, features of a vertex such as average ratio, average concave, average 

convex, and sulci-or-gyri can be extracted via mathematical operations [8]. Particularly, 

the feature, sulci-or-gyri, was used to classify a vertex to be a sulcal vertex or a gyral 

vertex. 

The second profiling step was only applied on gyral vertices on an inflated 

surface in order to identify centers of 3-hinge gyri. The inflated surface by FreeSurfer 

[71] here still retains the original topology information such as the number of vertices and 

the correspondence between an inflated surface (Figure 2.2(g)) and an original surface 

(Figure 2.2(b)). With this set-up, then 72 evenly distributed spokes and 20 evenly 

sampling points on each spoke were constructed. It is evident that each sampling point 

with a label indicates whether it is a gyrus or sulcus. Following the construction, we 

classify each spoke into two types – either all sampling points in this spoke are on a gyrus 

or only part of these points are on a gyrus. For the profile of a vertex, its adjacent all-gyri 

spokes were clustered into one group divided by any part-gyri spoke. If this vertex 

belongs to three all-gyri spoke groups, it is considered as a 3-hinge vertex. Finally, we 

clustered all adjacent 3-hinge vertices using spatial information and termed the vertex 

closest to cluster center as a 3-hinge center. In order to compute axonal fiber density of 2-

hinge and 3-hinge gyral folds later, we need to define an area for each 3-hinge vertex. 

Here we consider the surrounding area within a radius r=6mm of a 3-hinge center as its 

corresponding 3-hinge area (Figure 2.2(i)). Once the area of 3-hinge vertex is determined, 

the 2-hinge vertex area can be found by excluding 3-hinge areas.  
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Figure 2.2. Illustration of automatic 3-hinge gyral fold extraction on a human brain. (a) A 

reconstructed white matter (WM) cortical surface; (b) Profiling every voxel on the 

surface; (c) Cortical features detected after profiling; (d) The cortical surface profiled by 

sulcus (blue) or gyrus (red); (e) The corresponding inflated surface which has the same 

number of points as (a); (f) Mapping the sulcus and gyrus feature on the inflated surface.; 

(g) Second profile on a sulcus vertex; (h) Profile spokes labeled by sulcus or gyrus; (i) 

Cortical surface with the detected centers of 3-hinge (red region, center: yellow dots) and 

2-hinge area (gray region). 
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 Fiber density calculation on 2-hinge and 3-hinge gyri 

After dividing the gyri vertices into 2-hinge and 3-hinge areas, we then calculated 

the fiber density on all of the 3 hinges and 2 hinges detected on the cortical surface. Fiber 

density is defined as the number of DTI-derived streamline fibers per unit surface area 

[25]. Following this definition, we calculated the fiber density of both 3-hinge gyri and 2-

hinge gyri by averaging density values of the surrounding area of each vertex within 

radius r=2.5mm of its hinge center, the result of which is then used to represent the fiber 

density of a certain hinge. Radius of 2.5mm is chosen to avoid potential overlapping 

between 2-hinge gyri and 3-hinge gyri when we perform the averaging calculation. 

Finally, we made comparisons in fiber density between 2-hinge gyri and 3-hinge gyri in 

macaques, chimpanzees and human brains. This computational pipeline of measuring 

fiber densities on 2 hinges and 3 hinges is similar to those used in our prior studies [24, 

57]. 

 Computational model of biomechanical simulations 

Three-dimensional (3D) finite element analyses on a double-layer soft tissue 

model that mimics a small piece of the cortex are performed to investigate the 

fundamental mechanism of consistent hinge formation in the cortical folding, as 

illustrated in Figure 2.3(a). The top layer represents the developing cortical plate (cortex) 

and the bottom layer is the core of the brain which is considered as a simple organization 

of the subplate, intermediate zone and ventricular zone, as we designed and tested in our 

prior studies [72]. The cerebral cortex is a thin (2–4 mm) [58] layer in contrast to the 

inner core which has a thickness around 50 mm [73]. The dimension of the plate is 

selected to be large enough (300×300×50mm3) in comparison with the wavelength of 
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cortical folds. In Figure 2.3(a), the green area in the middle of the free surface of the 

cortex layer in the model is an indicator that shows there is a bundle of axonal fibers 

beneath it. The material properties of the green area are set the same as the cortex, and 

the main purpose of the green area is to help trace the location of axonal fibers after 

cortical convolution. Figure 2.3(b) shows the cross-section of the cortex model. The part 

with blue in the model represents the bundle of axonal fibers which are across the entire 

core. In this model, we utilize that differential growth in the cortex as the basic driving 

mechanism for cortical folding, similar to previous simulation studies [74-76] . 

 
 

(a) (b) 

Figure 2.3. The double-layer soft model mimicking a small piece of the cortex. (a) An 

entire model with a green area in the middle representing there is a bundle of axonal 

fibers beneath it; (b) The cross-section of our cortex model. Blue color represents a 

bundle of axonal fibers. 

Growth in this soft tissue model is simulated via thermal expansion [77-79]. For 

understanding the detail of analogy between volumetric growth model and thermal stress 

model please check reference [77]. The growth rate of bundle of fibers is considered to be 

variable to conduct different scenarios, so that we can explore how growth rates of axonal 

fibers can regulate the formation of consistent gyri and hinge patterns for the green area 

in our model. Material properties of the cortex and core are set as the same in the model 
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since recent study has shown that there is no significant difference in material property 

between gray and white matter of the brain [80]. Our previous studies have shown that 

morphological patterns of the cortex model after growth are independent of the absolute 

value of elastic modulus of the cortex and core of the cortex, but they depend on the ratio 

of their moduli [72, 81]. The axonal stiffness depends critically on the degree of 

myelination may change substantially during development [82]. From other hand, our 

results showed that stiffness of fibers do not have considerable effect on the gyrification 

and only their growth ratio show impact. Therefore, in our model, the stiffness of axonal 

fibers is assumed to be the same as the cortex and core have, and it is set as a constant. 

All finite element (FE) simulations are carried out by the popular package of ABAQUS. 

 

4. Results 

Based on the methods described above, we calculated the fiber densities on 2 

hinges and 3 hinges in macaque/chimpanzee/human brains. Comparisons were performed 

across these three primate species. Examples of the cortical surfaces color-coded by fiber 

density values are shown in Figure 2.4. We can see that the axonal fibers are much less 

dense in macaque and chimpanzee brains than that in human brain. Also, the fiber density 

on gyri is much denser than that on sulci, which is consistent with our previous findings 

in [24, 57]. The quantitative measurements in Sections 4.1-4.3 are based on the similar 

computational pipeline described in Section 3.3. 
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Figure 2.4. Examples of the cortical surfaces color-coded by fiber density values across 

the three species with the corresponding color bar under each surface (from the left to the 

right are macaque, chimpanzee and human brain, respectively).  

 Fiber density of 2-hinge gyri and 3-hinge gyri in human brains 

With the approaches described in Section 3.3, 3-hinge gyri were identified on 

cortical surfaces reconstructed using DTI data from 64 HCP subjects. Among these 

human brains, the average number of 3 hinges is around 137. Based on the approach in 

Section 3.4, we obtained the average fiber densities of 3- hinge gyri and 2-hinge gyri 

which are 10.1 and 3.85, respectively. This result shows a significant difference in the 

fiber density between 2-hinge and 3-hinge gyral folds, that is, 3-hinge gyral areas have a 

larger fiber density of more than 2 times than that on 2-hinge gyral areas, in human 

brains. Figure 2.5 shows fiber density distribution of 2-hinge gyri and 3-hinge gyri in five 

randomly-selected human brains, in which yellow spheres are used to locate the centers 

of 3-hinge gyral areas. Again, it can be seen that axonal fibers connected to 3-hinge gyri 

are much denser. In addition, the individually average fiber densities on 2 hinges and 3 

hinges in Figure 2.6 suggest a large difference between them. Moreover, Figure 2.7 
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shows the fiber density distribution of 2-hinge and 3-hinge gyri across 64 human brain 

subjects. It can be noticed that the fiber density range with the largest number of subjects 

for 2-hinge gyri is 3~4.5 while the range for 3-hinge gyri is 8~11. Statistical two sample 

t-test (p-value close to 0) also confirmed the significance of such difference among these 

64 human brains.  
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Figure 2.5. Visualization of the distributions of 2-hinge and 3-hinge fiber densities in 5 

randomly selected human brains.  

 

Figure 2.6. The average fiber densities on 2 hinges and 3 hinges within the group of 64 

human brains. 

 

Figure 2.7. 2-hinge and 3-hinge fiber density distributions within the group of 64 human 

brains. The number of subjects in each range is denoted in the blue circle with an arrow.  

 Fiber density of 2-hinge gyri and 3-hinge gyri in chimpanzee and macaque 

brains 

In a similar way, fiber densities in 2-hinge gyri and 3 hinge-gyri in chimpanzee 

and macaque brains were quantified and shown in Figures 2.8-2.13, respectively. Here, 

the average fiber densities on 2 hinges and 3 hinges in chimpanzee brains are 0.56 and 

1.96, respectively; the average fiber densities on 2 hinges and 3 hinges in macaque brains 

are 0.92 and 4.95, respectively. From Figure 2.9-2.10 and Figure 2.12-2.13, we can see 
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an even more significant difference between the fiber densities of 2-hinge and 3-hinge 

gyral folds, that is, the 3-hinge fiber density is more than 2 times larger than that on 2 

hinges in chimpanzee brains and more than 4 times larger than that on 2 hinges in 

macaque brains. Our results show that the fiber density range with the largest number of 

subjects for 2-hinge gyri is 0.6 ~0.8 while the range for 3-hinge gyri is 2 ~2.5 within the 

group of 16 chimpanzees. For the group of 20 macaques, the fiber density range with the 

largest number of subjects for 2-hinge gyri is 1~1.5, while the range for 3-hinge gyri is 

4~6. Again, close to 0 p-value derived from two sample t-test performed on the fiber 

densities on 2 hinges and 3 hinges in the whole brain among all subjects of these two 

species indicates a very significant difference. 
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Figure 2.8. Visualization of the distributions of 2-hinge and 3-hinge fiber densities in 5 

randomly selected chimpanzee brains. 
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Figure 2.9. The average fiber densities on 2 hinges and 3 hinges within the group of 16 

chimpanzees. 

 

Figure 2.10. 2-hinge and 3-hinge density value distributions within the group of 16 

chimpanzees. The number of subjects in each range is indicated in the blue circle with an 

arrow. 



 

31 

 

Figure 2.11. Visualization of the distributions of 2-hinge and 3-hinge fiber densities in 5 

randomly selected macaque brains. 
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Figure 2.12. The average fiber densities on 2 hinges and 3 hinges within the group of 20 

macaques. 

 

Figure 2.13. 2-hinge and 3-hinge density value distributions within the group of 20 

macaques. The number of subjects in each range is indicated in the blue circle with an 

arrow. 

 Correlation between 3-hinge gyral morphology complexity and 3-hinge/2-

hinge gyral fiber density ratio across three primate species 

From the results in Section 4.1 and 4.2, it can be seen that the ratios of the 

averaged axonal fiber density on 3 hinges to that on 2 hinges across the whole cortical 

surface are about 5, 3.5 and 2.5 in macaque, chimpanzee and human brains respectively. 

Inspired by this observation, we correlate it with the morphology complexity of 3-hinge 

gyral folds [40] and analyzed the relationship between them. Here, the morphology 

pattern is referred to as morphology feature combination of a 3-hinge gyrus where each 

hinge-line corresponds to one of 5 morphology features: ‘I’, ‘V’, ‘U’, ‘S’, ‘O’, detailed in 
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our recent work [40]. Hence, the morphology pattern of each 3 hinge is represented by a 

combination of three morphology features, such as IVO, IUS and so on. Based on the 33 

morphology patterns detected among the three primate species [40], we define 

morphology pattern complexity for each subject as a ratio of the number of patterns of 3-

hinge gyral areas across the whole brain to the total number of patterns 33. Therefore, we 

can compute morphology pattern complexity of the 3-hinge gyral fold areas for each 

primate specie and thus derive the mean value for each by averaging them. By analyzing 

the relationship between 3-hinge morphology pattern complexity and fiber density ratio 

of 3-hinge to 2-hinge gyri, we noticed that there is an inverse relationship between them 

across three primate species, that is, the more complex the 3-hinge morphology pattern is, 

the more likely the fiber density ratio of 3-hinge to 2-hinge gyri will be smaller. The 

illustration of the inverse correlation tendency is shown in Figure  2.14, in which we can 

see that from macaque, chimpanzee to human brains, the morphology pattern complexity 

increase, while the fiber density ratio of 3-hinge to 2-hinge gyri across the whole brain 

goes down. These interesting observations support our hypothesis that axonal fiber 

densities might play an important role in regulating the shape formation of 3-hinge gyri, 

that is, stronger regulations associated with larger fiber density ratios of 3-hinge to 2-

hinge induce less 3-hinge morphology complexity and variability.    
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Figure 2.14. Inverse correlation between average fiber density ratio of 3-hinge to 2-hinge 

gyri and average morphology complexity in macaque, chimpanzee and human brains. 

The green line is the global fiber density ratio that refers to the vertical axis on the left, 

and the blue line is the morphology complexity that refers to the vertical axis on the right. 

 Computational results 

Figure 2.15 shows a dynamic convolution process of a brain model. Both the 

cortex and axonal fibers in our model are assumed to grow, and after certain growth, our 

cortex model loses stability and forms the convoluted pattern. As a result, 2-hinge and 3-

hinge gyri are observed on the free surface of the cortex. We can also observe that there 

is a 3-hinge gyrus on top of the axonal fibers in this model. Experimental observations in 

the literature have revealed that axonal fibers can be either under tension or compression, 

but the effect of axonal fibers on the formation of consistent gyral hinges remains 

unanswered [82]. Therefore, by controlling the growth rate of axonal fibers we are able to 

tune the force status inside fibers and look into the possible explanations on the formation 

of consistent gyral hinges in areas with high concentration of fibers. Two types of 

computational models are considered here: one without axonal fibers and the other one 

with axonal fibers, as detailed in the following two subsections respectively. 
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(a) (b) 

  

(c) (d) 

Figure 2.15. Initial perturbation and convolution of the model. (a) Different initial 

perturbations are applied on the free surface of cortex; (b) Instability initiation; (c) 

Folding after instability; (d) Convolution of the model. The cortex and fibers are growing 

simultaneously and create a convoluted pattern on the free surface of the cortex. Growth 

rate of fibers is the same as the cortex growth rate. The green area is located on a hinge. 

4.4.1 Simulation model without fiber 

In order to determine the effect of axonal fibers on consistent gyral hinge 

formation, first, we performed a series of computational simulations only with growth in 

the cortex and considered them as control studies. Since we have performed and 

published the similar studies [72], here we just summarizes several key findings in brief. 

The growth in the cortex without any contribution from axonal fibers can produce 

convoluted patterns with gyri and sulci as we expect, but the sites of gyral hinge 

formation in the convoluted model look unpredictable and fairly random. In order to 
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confirm this randomness of gyral hinge sites in our simulation models without axonal 

fibers, we performed a series of computational simulations with the same model 

specifications (growth rate, geometric parameters, and materials properties) except the 

initial small perturbations as shown in Figure 2.15(a). Models with different initial 

perturbations are hypothesized to mimic the individual brain samples we had in imaging 

data analyses. These findings suggest that homogeneous growth in the cortex fails to 

produce consistent gyral hinges on a specific site [72], Combining this simulation result 

with the imaging data analysis result in Sections 3.1-3.3 that much denser fibers are 

connected to gyri in comparison with sulci, it is reasonable to hypothesize that denser 

fiber connections induce or regulate the formation of gyral hinges, including 3-hinge gyri. 

4.4.2 Simulation model with fibers 

Following the control study, we performed another set of simulations to test our 

hypothesis that the presence of axonal fibers as well as their growth in our cortex model 

can regulate or determine the sites of gyral hinge formation. By adjusting the growth rate 

of axonal fibers in our model we can screen through various scenarios to possibly find the 

right parameters which can produce gyral hinges on top of the axonal fibers. Here, the 

growth rate of axonal fibers is mimicked by a dimensionless number according to the 

growth rate of the cortex. Figure 2.15(d) shows the result of a model with growing axonal 

fibers. The growth rate of axonal fibers is set the same as the cortex. It can be seen that 

on top of growing axonal fibers a 3-hinge gyrus is formed. An interesting question arises: 

how does the presence of the growing axonal fibers influence the sites of gyral hinge 

formation where all other parameters are kept intact in our model, e.g. growth rate of the 

cortex and mesh size of the computational model?   
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In order to answer the abovementioned question, we run a considerable amount of 

finite element simulation cases with different growth rates in axonal fibers. We set the 

growth rate of axonal fibers as five different values, all of which are comparable with the 

growth rate in the cortex. Within models with the same growth rate of axonal fibers, 

different initial perturbations are hypothesized to mimic the individual brain samples we 

had in imaging data analyses. Table 2.1 collects the folding patterns of the green area in 

our model (Figure 2.15) after running multiple cases with and without fibers. Results 

show that there is a very high possibility to form a 3-hinge gyrus in the specific area 

when the growth rate of axonal fibers is close to the growth rate of the cortex, while the 

green area in models without axonal fibers could be located on hinge, sulci or in-between 

banks. 

Table 2.1. Statistical results of the numbers of the locations of the special areas on gyral 

hinges, sulci and in-between banks.  

 Model with fibers (growth rate of fibers/growth rate 

of cortex) 

Model without 

fibers 

0.7 0.8 0.9 1 1.1 

hinge 4 7 9 10 10 14 

sulci 0 0 0 0 0 19 

banks 6 3 1 0 0 17 

total 10 10 10 10 10 50 

 

Our results show that a higher growth rate in axonal fibers always leads to 3-hinge 

gyri formation on top of the axonal fiber bundle. Therefore, our findings imply that the 

presence of growing axonal fibers could be responsible for forming a consistent gyral 

hinge in a special area with a higher concentration of axonal fibers. Interestingly, Table 

2.1 also shows that the sites with a high density of growing axonal fibers do not develop 

any sulci as we observe in experimental results. Figure 2.16 shows three different initial 
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perturbations in our model with the presence of growing axonal fibers generally leading 

to the formation of different hinge patterns, but in all cases the green area always 

develops a 3-hinge gyrus. These 3-hinge patterns in Figure 2.16 are comparable with 

experimental 3-hinge patterns like IVO and IUS observed in neuroimaging data. This 

observation is in good agreement with our experimental observation in individual brain 

samples and demonstrates the regulating effect of dense growing axonal fibers in the 

consistent gyral hinges, particularly 3-hinge formation. 

 

                            (a)                                          (b)                                 (c)                            

Figure 2.16. (a)-(c) Three different initial perturbations after convolution lead to different 

hinge patterns in the center of the model. In all models with the presence of the growing 

fibers, the green area is located on a 3-hinge. 

4.4.3 Scattered and different shapes of fibers 

The main objective of our simplified model was to demonstrate that 3-hinge gyrus 

can consistently form in a special area with a high density of fibers. We know that in a 

real brain there are many complex fibers with various types and orientations. 

Incorporating such complexity into the mechanical model is very challenging at this 
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stage. Therefore, by a simplified model, we are able to incorporate mechanical effect of 

growing fibers on the formation of 3-hinges. Since we selected a small patch of the entire 

cortex, therefore it is acceptable to assume that the orientation of fibers is perpendicular 

to the cortex. In a bigger scale, the type and orientation of fibers can be different across 

the entire cortex. Here, we focused our study on a single fiber bundle and its counterpart 

3-hinge.  

In the next step, we increased the number of fiber bundles and placed them 

randomly in our model. Simulation results, again, confirmed our hypothesis that 3-hinges 

were always formed at sites where the growing fiber bundles were embedded underneath. 

Figure 2.17 shows the evolution steps of a finite element model with ten scattered 

growing fiber bundles. 

 

                         (a)                            (b)                     (c)                           (d) 

Figure 2.17. (a)-(d) Evolution steps of a finite element model with ten growing fiber 

bundles. After convolution, 3- hinges were always formed on the top of these growing 

fiber bundles.  

Figure 2.18 shows comparison of two finite element models with a real brain 

image. Initial location of fibers was set roughly according to the location of 3-hinges 

from the image data. Initial perturbations were applied on the free surface of FE models. 

It is clear, after growth and gyrification, that locations of 3-hinges on the free surface of 

the cortex are the same as the counterparts on the real brain. We speculate the 
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discrepancy between gyri and sulci patterns in the FE models and real brain is due to the 

effect of 2-hinges fibers which have not been included in the FE models. This issue is not 

the scope of our study at this stage.  

 
                        (a)                                         (b)                                        (c) 

Figure 2.18. Contribution of fibers growth on the convolution morphology. (a) Finite 

element model # 1; (b) Finite element model # 2; (c) A small patch of a real brain with 3-

hinges. Red dots in three figures means 3-hinges.  

In order to better represent the realistic fiber growth in brain, we incorporated a 

gradient growth in a special type of 3-hinges. Since the density of fibers in the junction of 

3-hinge lines (red points in Figure 2.18(c)) is higher than those along lines (solid lines in 

Figure 2.18(c)), therefore we constructed a complex FE model to incorporate this growth 

difference in a fiber bundle. This model allows us to set a high growth ratio in the 

junction of the 3-hinge and lower the growth ratio along the connecting lines to zero at 

the tip of lines. In other words, the growth ratio is the highest at the junction of 3-hinge 

and is zero at the tip of connecting lines, as shown in Figure 2.19(a). We created several 

models with and without growing fiber with gradient growth to check the contribution of 

fibers on the formation of 3- hinges. Results, again, showed that without growth of fibers, 

3-hinges might form in random locations (Figure 2.19(b)). It is clear, in the bottom row 

of Figure 2.19(b) Y- shaped red area can acquire different shapes, since there is no 
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growing fiber beneath them. In contrast, in the top row of Figure 2.19(b) Y-shaped red 

area always forms Y-shaped 3-hinges because there are growing fibers beneath these red 

areas. 

 
                          (a)                                                                  (b) 

Figure 2.19. Effect of gradient growth of Y-shaped fibers on the formation of 3-hinges. 

(a) the initial computational model.  (b) the top row: models with growing fibers; the 

bottom row: models without growing fibers. 

Finally, we added several similar “Y” shape fibers into the computational model. 

Figure 2.20(a) shows the initial computational configuration and Figure 2.20(b) shows 

the model after growth and cortical convolution. It can be seen that growing fibers are 

able to control the location and type of the 3-hinges. If other shapes of fibers are 

implemented in the computational model, different kinds of 3-hinges after convolution 

are accessible.  It is noteworthy to mention that the red “Y” shape areas on the cortex, are 

indicators that show there are the same shape of fiber bundles beneath them. The material 

properties of the red areas are set the same as the cortex, and the main purpose of the red 

areas are to help trace the location of axonal fibers after cortical convolution. 
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                                               (a)                                         (b) 

Figure 2.20. (a) Top view of “Y” shape fibers with gradient growth in initial state; (b) 

Top view of the model after growth and convolution. Growth ratio linearly decreases 

from the intersection point of hinges lines to the tip of them. 

 

5. Discussion and Conclusion 

As far as we know, most of previous major stream descriptors for cortical folding 

patterns focus on cortical complexity quantification, which are difficult to quantify the 

variation of folding patterns and infer anatomical correspondence of the cortical 

landscapes based on exclusively local-scale or global-scale descriptors. However, the 

descriptor proposed in our work (2-hinge and 3-hinge) took the advantages of both 

parametric and surface profiling methods to analyze cortical folding patterns in terms of 

gyral hinge numbers and shapes. Previous works have shown that the axonal fibers 

connected to gyri are significantly denser than those connected to the sulci in human, 

chimpanzee and macaque brains [57], which offers a novel explanation into the intrinsic 

relationship between cortical folding and axonal wiring. In this study, we further 

quantitatively measured the fiber densities of 2-hinge and 3-hinge gyral areas in 

macaque, chimpanzee and human brains and quantitatively compared them within each 

species, which is a great piece of enhancement compared with the previous ones. Our 
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results overwhelmingly showed that fiber densities in 3-hinge gyri are much higher than 

those in 2-hinge gyri, and thus we are strongly motivated to hypothesize that besides 

cortical expansion as the primary mechanism of gyrification, denser fiber connections can 

also induce the formation of 3-hinge gyri. In order to examine the biomechanical basis of 

this hypothesis, we designed 3D finite element soft tissue models and performed 

extensive computational simulations with a variety of settings to investigate the 

fundamental biomechanical mechanism of consistent 3-hinge formation. Our simulation 

consistently results showed that gyral regions with higher concentrations of growing 

axonal fibers have much higher probability of forming 3-hinge gyri. Altogether, our 

integrated studies of neuroimaging data analyses and computational biomechanical 

simulations offer a plausible theory of 3-hinge gyri formation: denser growing fiber 

connections induce 3-hinge gyri formation.  

Given the strong correlation between brain structure and function, e.g., strong 

structural connectivity predicts functional connectivity (Honey et al., 2009; Deng et al., 2014), 

complex functional regions locate significantly more on gyral regions than sulcal regions 

and the most complex ones are usually found in 3-hinge area based on a statistical 

analysis [18], our future work will explore the functional implications that much stronger 

axonal fibers are connected to 3-hinge gyri in comparison with 2-hinge gyri. For instance, 

our prior studies have suggested a functional model of cortical gyri and sulci (Deng et al., 

2014), that is, gyri are the functional integration centers while sulci are the local 

information process units. Following this research line, we will further refine this 

functional model by differentiating cortical 3-hinge gyri and 2-hinge gyri and strive to 

characterize the possible different functional roles played by 3-hinge and 2-hinge gyral 
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regions, which also can be extended to investigate a variety of neurodevelopmental 

diseases. The elucidation of the possible functional role differences of 3-hinge and 2-

hinge gyri could potentially fundamentally advance our understanding of the structural 

and functional brain architectures, as well as their relationships.  
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CHAPTER 3 

EXPLORING INTRINSIC FUNCTIONAL DIFFERENCES OF GYRI, SULCI AND 2-

HINGE, 3-HINGE JOINTS ON CEREBRAL CORTEX2 
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1. Abstract 

Motivated by the unique structural characteristic of 3-hinge gyral joints, in this 

chapter, I investigate the intrinsic functional differences between gyral, sulcal and 2-

hinge and 3-hinge rsfMRI signals from the functional perspective using the most 

commonly used supervised deep learning model — 1D-CNN (Convolutional Neural 

Network). 

The human cerebral cortex has been commonly known as a highly-folded region 

which consists of convex gyri and concave sulci. Many previous studies have already 

revealed the fundamental differences of these convex and concave areas by analyzing 

structural and functional connectivity patterns. However, to our best knowledge, rare 

work has been done to explore their intrinsic functional differences from the perspective 

of neural activity, especially for 3-hinge gyral folding joints. Inspired by current 

evidences, in this chapter, experiments based on classification models learned by 

convolutional neural network (CNN) were designed and performed on resting state 

functional magnetic resonance imaging (rs-fMRI) data of both healthy controls and 

autism patients from the publicly available ABIDE Ⅱ database. In our work, gyral and 

sulcal, 2-hinge and 3-hinge joint rs-fMRI signals were modeled and predicted using 

CNNs with an average testing classification accuracy of 94.24% for controls, 95.24% for 

patients and 87.53% for controls, 87.72% for patients at individual level separately, 

which confirms different functional roles of neural activities under resting state in gyri 

and sulci, as well as 2-hinge and 3-hinge gyral folding joints in healthy subjects and 

autism groups. Besides, further analyses on learned characteristic features to differentiate 
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gyral/sulcal, 2-hinge/3-hinge joint rs-fMRI signals were also designed and performed to 

interpret our findings. 

 

2. Background and Motivation 

The human cerebral cortex is a highly convoluted region which folds itself into 

gyri and sulci during brain development [3, 4, 43, 45, 83]. Neuroscientific studies have 

demonstrated that neural structures of concave sulci and convex gyri emerge from a 

complex cortical folding process which has a close relationship with various factors, such 

as neurodevelopment[27, 36, 48, 84], cytoarchitecture [4, 51] and cognitive functioning 

[52-55]. The concepts of folds and folding were originated from folding pattern analysis 

of rocks in geology [85], which inspires a novel way to describe gyral folding patterns in 

terms of gyral hinge numbers by taking advantages of both parametric and surface 

profiling methods [8, 40, 86]. Specifically, 3-hinge gyral joint is a cortical gyral region 

where 3 different gyral crests meet [8, 86]. Many previous literatures have put much 

effort in studying differences in gyri and sulci, 2-hinge and 3-hinge gyral joints by 

analyzing both structural and functional connectivity patterns [15, 24, 26, 86]. However, 

the intrinsically different functional roles of gyri/sulci or 2-hinge/3-hinge joints in terms 

of neural activity under resting state have rarely been noticed and explored even for 

healthy people. For example, the relationship between cortical folding and axonal wiring 

was studied and it demonstrated that gyri have significantly higher axonal connections 

relative to sulci, suggesting an axonal pushing mechanism of cortical folding, which have 

provided a novel insight on fundamental mechanisms for the organization and 

development of the cerebral cortex [24, 26, 29]. In addition to the analyses of gyri and 
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sulci, a recent investigation into structural and functional cortical architectures is also 

provided by comparing the DTI-derived fiber densities in 3-hinge and 2-hinge gyral joint 

regions [86]. Meanwhile, previous efforts were also made to study gyral and sulcal 

differences from the functional perspective [15, 18, 19, 30]. For instance, it demonstrated 

that gyri are functional connection centers to exchange information among remote 

structurally connected gyri and neighboring sulci, while sulci communicate directly with 

their neighboring gyri and indirectly with other cortical regions through gyri [15]. Based 

on these abovementioned evidences, we can find that there do exist functional difference 

when it comes to gyri and sulci. 

Thanks to the advancements in machine learning and data mining field during 

recent years, deep learning techniques has achieved promising performance on image 

classification, text classification and object detection by using various deep learning 

models, especially for models based on CNN [87-92]. Nowadays, applications of deep 

learning to medical image analysis such as disorder classification, image segmentation, 

registration, lesion detection and so on has also grown rapidly [93-97]. Particularly, we 

noticed that some CNN models have already been applied on certain brain network 

analyses based on fMRI data. For example, a 3D CNN framework was proposed to 

classify and recognize large scale functional brain networks derived from fMRI scans 

automatically [95] and this framework was improved later in an iterative way which has a 

more powerful spatial pattern modelling capability [97]. Besides brain network related 

studies, another recently developed model based on CNN which is deep convolutional 

auto-encoder (DCAE) was also developed to model task-based fMRI (tfMRI) data by 

learning discriminative features from tfMRI time series [96].  
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Considering the promising results achieved by these fMRI studies based on deep 

learning algorithms and the powerful capability in learning discriminative features of 

CNN models, we are inspired to apply 1D-CNN classification models to differentiate rs-

fMRI time series of gyri/sulci, 2-hinge/3-hinge joints and analyze the learned 

characteristic features in frequency domain which serves as an important aspect in 

understanding brain functional characteristics [98-102]. Here, the designed 1D-CNN 

classification models are applied on rs-fMRI datasets from two institutions of publicly 

available ABIDE Ⅱ database, including both healthy controls and autism patients. Our 

experimental results showed that gyral/sulcal and 2-hinge/3-hinge joint rs-fMRI signals 

can be differentiated and classified in both healthy subjects and autism groups across 

scans from different institutions at individual level. In terms of average classification 

accuracy based on testing data, the promising result which is 94.24% for controls, 

95.24% for patients in differentiating gyri and sulci fMRI signals, 87.53% for controls, 

87.72% for patients in differentiating 2-hinge and 3-hinge fMRI joint signals does 

confirm different functional roles of gyri and sulci or 2-hinge and 3-hinge joints in both 

healthy and autism subjects. In addition, further analyses on learned features in frequency 

domain also suggested characteristic frequency features of gyral/sulcal and 2-hinge/3-

hinge joints. We can observe different frequency distribution patterns of features learned 

from gyri/sulci or 2-hinge/3-hinge joint rs-fMRI signals which indicated their functional 

differences as well. In general, our overall results potentially demonstrated the 

intrinsically different functional roles of gyri/sulci or 2-hinge/3-hinge joints on cerebral 

cortex which provides a new insight into learning their complex functions. 
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3. Methods 

3.1 Overview 

In general, the overall analysis framework based on 1D-CNN classification model 

can be summarized as follows: We firstly identified the exact anatomical locations of 

gyri, sulci, 2-hinge, 3-hinge joints on the cortical surface individually. Then, according to 

the correspondence between voxels in the registered fMRI volume and vertices on the 

cortical surface from the same subject, different types of fMRI signals (gyri, sulci, 2-

hinge, 3-hinge) can be extracted. After that, either gyri/sulci fMRI signals with label 0 

(sulcus) and 1 (gyrus) or 2-hinge/3-hinge fMRI signals with label 0 (2-hinge) and 1 (3-

hinge) of each single subject were rearranged together and used as sample signals for 

both training and testing purpose in 1D-CNN classification model. In this way, each 

subject comes with two classification models, one is for gyri/sulci fMRI signal 

differentiation, the other is for 2-hinge/3-hinge fMRI signal differentiation. Finally, we 

did a further analysis on the characteristic features learned from 1D-CNN models and 

tried to interpret them in frequency domain. The illustration of the whole analysis 

pipeline can be learned from the following sections. 

3.2 Data description and preprocessing 

In this study, our experimental data were downloaded from the publicly available 

database ABIDE Ⅱ (Autism Brain Imaging Data Exchange Ⅱ). Dataset from two 

institutions (BNI: Barrow Neurological Institute and EMC: Erasmus University Medical 

Center Rotterdam) are chosen as a test bed. According to manually checked 

preprocessing results, 58 subjects (29 control, 29 patients) from BNI and 51 subjects (27 

controls, 24 patients) from EMC are considered as high quality and thus selected. Please 
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visit http://fcon_1000.projects.nitrc.org/indi/abide/abide_Ⅱ.html for detailed acquisition 

parameters information. 

Preprocessing for T1-weighted MRI data included image resampling, skull 

removal, tissue segmentation and cortical surface reconstruction. Specifically, T1 images 

were resampled into 1mm isotropic images using spline interpolation. For rs-fMRI data, 

skull removal, motion correction, spatial smoothing, temporal pre-whitening, slice time 

correction, global drift removal, band-pass filtering, and linear registration to their 

individual MRI space were performed. Here, the registration step can guarantee the 

correspondence between voxels in rs-fMRI volume and vertices on cortical surface. In 

this way, different types of fMRI signals (gyri, sulci, 2-hinge, 3-hinge) can be extracted 

according to their anatomical labels. In this work, all the preprocessing steps were 

implemented by using FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) [70] and other tools 

based on Freesurfer (http://surfer.nmr.mgh.harvard.edu/) [71].  

3.3 rs-fMRI signal extraction 

In order to prepare rs-fMRI time series samples for 1D-CNN model training and 

evaluation, we first need to separate gyral/sulcal and 2-hinge/3-hinge gyral joint areas 

and extract the corresponding rs-fMRI signals. Since our classification model was trained 

at individual level, all rs-fMRI data need to be registered to their individual MRI data 

space to ensure the correspondence between rs-fMRI volume and cortical surface. Here, 

one of the attributes of the reconstructed cortical surface generated from FreeSurfer 

named ‘sulc’ is used to separate gyral/sulcal regions. A ‘sulc vector’ corresponding to all 

the vertices on the cortex comes with each cortical surface, the value of which refers to 

sulcal depth. Here, the sulcal depth is the opposite measurement term to gyral altitude 

http://fcon_1000.projects.nitrc.org/indi/abide/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
http://surfer.nmr.mgh.harvard.edu/
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which means sulcus with positive sulci depth will have a corresponding negative gyral 

altitude, gyrus with negative sulci depth will have a corresponding positive gyral altitude 

and vice versa. Specifically, gyral altitude is defined as the dot product of the movement 

vector during inflation with the surface normal which can be viewed as the altitude from 

the current vertex to the “mid-surface” that exists between gyri and sulci [5, 32]. 

Therefore, if the value of ‘sulc’ for a single vertex is greater than 0, then it will be 

labelled as a sulcal vertex; otherwise, it will be labelled as a gyral vertex. However, the 

correctness of vertex labeling of vertices at the boundary of gyri and sulci areas is 

sometimes not assured. In such case, we choose another reliable threshold of 0.3 instead. 

That is, vertices with ‘sulc’ value greater than 0.3 belong to sulcal areas and vertices with 

‘sulc’ value less than -0.3 belong to gyral areas. In this way, the only influence resulted 

from the newly set threshold 0.3 is that we may have less gyral/sulcal rs-fMRI sample 

signals, but all the samples are guaranteed with the right labels. At the same time, the 

number of sample signals after applying threshold 0.3 is still large enough for training 

purpose as can be seen in Section 3.4. Once the extraction of gyral regions completed, the 

separation of 2-hinge/3-hinge gyral joint areas could be performed next. In this chapter, 

3-hinge center vertices were extracted automatically based on a novel computational 

framework which can construct gyral nets from surface meshes efficiently. Here, ‘gyral 

net’ was proposed as a new representation of cortical gyri/sulci organization pattern and 

modeled cortical architecture from a graph perspective. For the details of this automatic 

framework in extracting 3-hinge gyral joints, please refer to [32]. 

As shown in Figure 3.1, we can see yellow gyral nets [32] as well as red 3-hinge 

center vertices across the whole cortical surface. To better visualize, we select two 
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representative three hinge areas of both left and right hemispheres which are circled by 

dashed blue line and zoomed in. From the enlarged part, it can be seen clearly that 3-

hinge gyral region is a cortical gyral joint where 3 different gyral crests (highlighted 

green lines) meet. To separate 2-hinge and 3-hinge gyral regions, a radius of 6mm is 

predefined which indicates that the surrounding areas of each vertex within radius r=6mm 

of its 3-hinge center are labelled as 3-hinge gyral regions, and areas consisting of the 

remaining vertices on gyral regions are all labelled as 2-hinge gyral regions. 

Consequently, the separation of gyral/sulcal and 2-hinge/3-hinge areas can be visualized 

in Figure 3.2 and the rs-fMRI signals with different labels can be extracted by mapping 

the vertices on cortical surface to voxels in rs-fMRI volume data individually. Here, the 

radius of 6mm is chosen empirically, it looks reasonable and can be visualized from the 

right column in Figure 3.2. Moreover, such a radius can also ensure the sample size of 2-

hinge and 3-hinge rs-fMRI signals comparable for the training and testing process in the 

classification model. We can see that the left column in Figure 3.2 shows the left and 

right hemisphere cortical surface parcellation measured by sulcal depth, it can be 

observed that gyral region corresponds to a negative ‘sulc’ value and sulcal region 

corresponds to a positive ‘sulcal’ value. For the middle column in Figure 3.2, gyral 

region by red and sulcal region by blue under the threshold 0.3 can be visualized, some of 

the remaining areas may belong to gyral or sulcal region, but in order to ensure the 

correctness of the extraction of different types of fMRI signals, we choose to not consider 

the vertices at the boundary. From the right column, we can see the corresponding 2-

hinge (red) region and 3-hinge (green) region constrained by radius=6mm and it can be 

found that the range of 3-hinge areas under such radius constrain is quite reasonable. 
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Once the anatomical labels (gyri, sulci, 2-hinge,3-hinge) of rs-fMRI signals were 

confirmed, they can be extracted accordingly and served as training and testing samples 

in 1D-CNN model. 

 

Figure 3.1. Visualization of gyral net (yellow lines) and 3-hinge center vertices (red dots). 

In the middle, there are two enlarged representative 3-hinge joints highlighted by green 

lines (3-hinge joint is where 3 different gyral crests meet) from both left and right 

hemisphere. The corresponding region of the 3-hinge joints in both hemispheres are 

dashed by the blue circle on the cortical surface. 
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Figure 3.2. Region separation. Left: original cortical surface parcellation measured by 

sulcal depth. Here, gyral region has a negative depth value and sulcal region has a 

positvie depth value. Middle: sulcal/gyral region separation under ‘sulc’ threshold thr=0.3. 

Sulcal region (blue) corresponds to ‘sulc’>0.3 and gyral region (red) corresponds to ‘sulc’ 

< -0.3. Vertices at the boundary won’t be considered and are left as gray. Right: 2-hinge 

(red)/3-hinge (green) region separation under radius r=6mm, 3-hinge center vertices are 

represented by yellow dots. 

3.4 1D-CNN classification model architecture 

In our work, the architecture of 1D-CNN classification model is shared by all sets 

of training samples to differentiate either 1D gyral/sulcal or 2hinge/3hinge rs-                                                                                                                                                                                                                                                                                                                                                       

fMRI time series. One key reason that we performed the classification based on CNN 

method is because CNN models do not require features completely designed and 

extracted by humans in advance but can instead learn increasingly higher level features 

during the training process. Here, our simple but effective model is composed of alternate 

convolutional and pooling layers and subsequently with a global average (GA) pooling 

layer, then a fully connected (Dense) layer to perform classification in the end as shown 

in Figure 3.3. The red dot in Dense layer can either represent gyri in gyri/sulci 

classification or 3-hinge in 3-hinge/2-hinge classification and the blue dot can either 

represent sulci or 2-hinge in the same way. Specifically, we adopted a GA layer instead 

of a conventional fully connected layer right after the last pooling layer and the reasons 

behind this are two folds: Firstly, it can minimize overfitting by reducing the total 

number of trainable parameters in the model. In this case, the GA layer reduce each input 

feature map to a single number. Secondly, GA layer enforced a one-by-one 
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correspondence between the filters in the last convolutional layer and the softmax 

weights (blue and red weight lines in Figure 3.3) connecting GA and Dense layer. Once 

the correspondence is established, we can further exploit class specific characteristic 

features learned from our CNN models [103]. Through the GA layer, the feature map of 

each filter connected to the two neurons in the output layer (Dense) with two labels 

(gyri/sulci or 2-hinge/3-hinge).  

 

Figure 3.3. The architecture of 1D-CNN classification model. CONV is short for 

convolutional layer, POOL is short for max pooling layer, GA stands for global average 

pooling layer and Dense layer is the final layer to output classification result containing 

two labels (gyri/sulci or 3-hinge/2-hinge). Here, the length of the input original rs-fMRI 

time series is represented by t and the length of filter is fixed as 21. Filter numbers for 

three convolutional layers are 64, 32, 16 separately. Particularly, a one-by-one 

correspondence exists between the filters in the last convolutional layer and the softmax 

weights. 

All the implementations are based on Keras with a backend of TensorFlow. The 

hyperparameter settings of our proposed classification model are as follows. Filter length 
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is set as 21 which is defined as a window with the range of 21 time points, filter numbers 

for three convolutional layers are 64, 32, 16 separately. The stride of convolutional layer 

is 1 and zero padding is also applied to make sure the size of the input unchanged. The 

stride of max pooling is set as 2 and window size with length of 2, which makes the input 

size becomes half of its original length after going through each max pooling layer. Relu 

activation function is used to avoid vanishing gradient problem which also makes the 

training process much faster [104]. The model is trained by rmsprop optimizer that 

divides the learning rate for a weight by a running average of the magnitudes of recent 

gradients for that weight and categorical cross entropy is used as loss function. Training 

batch size is set as 128 and epoch is set as 50 to ensure the convergence of the training 

process. As we know, we cannot pass the entire dataset into the neural network at once, 

so we need to divide the whole dataset into several batches. Here, batch size refers to the 

total number of training examples present in a single batch and epoch is defined as one 

pass of the full training set. Besides, all the input rs-fMRI time series are normalized 

before training or testing. In our design, a single gyri/sulci or 2-hinge/3-hinge joint 

classification model was trained for each subject, but all the training models shared a 

same 1D-CNN architecture. For gyri/sulci classifiers, the size of training samples for a 

single subject can reach 70,000-120,000 for BNI data and 100,000-160,000 for EMC 

data. For 2-hinge/3-hinge classifiers, the size of training sample can reach 40,000-80,000 

for both BNI data and EMC data. Besides, for all classifiers, 70% of the extracted rs-

fMRI signals from a single subject were used for training process, where 20% of the 

input samples were used for validation purpose in order to avoid overfitting. To evaluate 

classification performance, the remaining 30% rs-fMRI signals were used for testing. 
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3.5 Analysis on learned characteristic features in 1D-CNN 

To better explore the intrinsic functional differences between gyri and sulci/2-

hinge and 3-hinge joints, further analysis on the internal behaviors of learned 1D-CNN 

model is needed. The reason for the good classification performance of CNN model is 

that it can directly extract class specific characteristic features. Here, we define feature as 

the pattern of the weights obtained from the CNN filters. In general, the most 

characteristic features can be learned from the last convolutional layer in the model, the 

nearest one to the final classifier (Dense layer). Therefore, we put our focus on analyzing 

the filters of the last convolutional layer (CONV3) and the weights of each filter are 

learned during training process. As mentioned in Section 3.4, in our proposed 1D-CNN 

model, each filter in the last convolutional layer is corresponding to two weights in 

softmax layer. It can be seen from Figure 3.3, GA layers have the same number of nodes 

(neurons) with the number of filters in CONV3 and Dense layer has two nodes. Here, for 

each node in GA layer, it has a relationship to the corresponding filter in CONV3. Thus, 

weight value of each connection between nodes in GA layer and the node in Dense layer 

can decide the filter type (gyral/sulcal filter or 2-hinge/3hinge filter) to a certain degree. 

Before training, each input rs-fMRI time series comes with a label, either 0 for sulci and 

1 for gyri or 0 for 2-hinge and 1 for 3-hinge. After the input goes through all the layers in 

the model, it can derive a final output from the two nodes in Dense layer, the value of 

which for both nodes is between 0 and 1 since a softmax function is used. If the output 

value is larger than 0.5 for a sulci/2-hinge node, the input signal will be assigned a label 0 

and if the output value is larger than 0.5 for a gyri/3-hinge node, the input signal will be 

assigned a label 1. According to our predefined labels (sulci:0, gyri:1 or 2-hinge:0, 3-
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hinge:1), if the weight value of each connection between nodes in GA layer and the nodes 

in Dense layer is positive for sulci node but negative for gyri node, then its corresponding 

filter is much likely to be a sulci or 2-hinge filter; otherwise, it is much likely to be a gyri 

or 3-hinge filter. The reason that we can determine a filter type in such a way is because 

the outputs of Relu activation function are all non-negative which can result in all non-

negative outputs for GA layer as well. Therefore, the positive weight value is more likely 

to contribute to a larger probability output for a certain type of node, however, the 

negative weight value works in an opposite way. Based on the sign of a weight value for 

the connection between the GA nodes and a certain type of node in Dense layer, the 

corresponding filter type will be confirmed. After the decision of a certain filter type is 

made, we apply an analysis on these features derived from filters of the last convolutional 

layer in the frequency domain. The frequency domain of features can be derived by 

applying fast Fourier transform (FFT) on the original filters and their visualizations and 

interpretations are provided in Section 4. 

 

4. Results 

Based on the methods described above, this section mainly presents two 

subsequent findings. The first finding is related to the classification results of gyri/sulci or 

2-hinge/3-hinge joint rs-fMRI signals in both healthy and patient groups at individual 

level. In terms of the classification accuracy based on testing data, it can reach more than 

90% for gyri/sulci rs-fMRI signal differentiation, more than 80% for 2-hinge/3-hinge 

joint rs-fMRI signal differentiation for every single subject, either control or patient. The 

other finding is derived from the frequency domain analysis on the learned high-level 
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features defined as the pattern of weights from filters in the last convolutional layer. 

From the visualization of filters (features) in frequency domain, we can observe a quite 

different frequency distribution pattern between gyral and sulcal filters or between 2-

hinge and 3-hinge filters which once again confirms the different functional roles of 

neural activities under resting state in gyri and sulci, as well as 2-hinge and 3-hinge gyral 

folding joints on the basis of the good classification performance. Interestingly, such 

differences can be found in both healthy controls and autism patients and the frequency 

distribution pattern of certain type of filters in both groups are quite similar which 

indicated that similar differences in functional roles of either gyri/sulci or 2-hinge/3-

hinge exist in all experimental subjects, no matter they are healthy or diseased.  

4.1 Classification Accuracy of gyri/sulci and 2-hinge/3-hinge joint rs-fMRI signals 

The classification accuracy with a corresponding standard deviation based on the 

testing result for each group is summarized in Table 3.1, where each value is the 

averaged one across the corresponding group. It can be seen that the overall 

differentiability between 2-hinge and 3-hinge joint rs-fMRI signals is not as good as that 

between sulci and gyri rs-fMRI signals. However, the classification result is still good 

enough, much better than chance level, which indicates possible intrinsically different 

functional roles of gyri/sulci and 2-hinge/3-hinge joints. For the 10% average accuracy 

gap between gyral/sulcal and 2-hinge/3-hinge joint rs-fMRI signal classification, it may 

ascribe to two reasons: 1. Since 2-hinge/3-hinge gyral joints all belong to gyral folding 

regions, the rs-fMRI signals extracted from different hinge regions but all from gyral 

region may not that differentiable from each other compared with the rs-fMRI signal 

classification of gyri/sulci. 2. The 6mm radius in separating 2-hinge and 3-hinge gyral 
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regions may result in some false positive and false negative anatomical labels although it 

is quite reasonable from visualization. However, more than 80% percent classification 

accuracy is still 30% more than chance level and it can be seen from the feature filters 

extracted from 2-hinge/3-hinge classification models that 2-hinge and 3-hinge rs-fMRI 

signals do have their corresponding characteristic features in frequency domain. Besides, 

we can also observe that there are rare differences between healthy controls and autism 

patients from a single institution in terms of classification accuracy for classifying either 

gyri/sulci or 2-hinge/3hinge joint rs-fMRI signals. Meanwhile, the classification accuracy 

remains quite stable although across different institutions and such a reproducible result 

indicates the good performance of our proposed model architecture in differentiating 

gyri/sulci or 2-hinge/3hinge joint rs-fMRI signals. 

Table 3.2. Average testing classification accuracy 

BNI EMC 

gyri/sulci 2-hinge/3-hinge gyri/sulci 2-hinge/3-hinge 

control patient control patient control patient control patient 

mean accuracy mean accuracy mean accuracy mean accuracy 

94.48% 95.15% 87.03% 87.58% 94.00% 95.35% 88.07% 87.88% 

standard deviation standard deviation standard deviation standard deviation 

0.0217 0.0228 0.0348 0.0345 0.0177 0.0237 0.0316 0.0342 

 

4.2 Gyral/sulcal and 2-hinge/3-hinge filters in frequency domain 

In the experiment, filters can be derived from all models trained from all subjects, 

which means the actual number of all filters we can obtain is much larger than the ones 

we presented in Figure 3.4(a). However, according to our observation, many of the filters 
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learned from different subjects are quite similar. Therefore, we did a clustering analysis 

on all of the learned filters of a certain type (gyral, sulcal, 2-hinge, 3hinge) in the 

frequency domain from the same group (control/patient) for both of the two institutions 

(BNI and EMC). What we can see here are the ones derived by averaging all the filters in 

the same cluster. 

From Figure 3.4(a), we can observe that for both control and patient groups, there 

are two main frequency distribution patterns in sulcal filters, one is that the medium 

frequency band tend to keep relatively high magnitude, such as the patterns in blue and 

green from sulci-control and patterns in blue from sulci-patient in Figure 3.5(a); the other 

is that a U shape pattern occurs in the medium frequency band which corresponds to a 

lower magnitude. However, the second pattern still has some sub-patterns where the 

width of the medium frequency band for the U shape and its corresponding magnitude are 

somewhat different. Besides, the bilateral frequency bands right near the U shape tend to 

keep relatively high magnitude. In gyral filters, it presents a quite different situation 

where the magnitude in all frequency band is much lower (mostly less than 0.5) 

compared with those in sulcal filters. In 3-hinge filters, most frequency band exhibits a 

relatively low magnitude and a flat tendency compared with those in 2-hinge filters. 

Interestingly, we can find that the characteristic frequency domain 3-hinge filter type is a 

subtype of the derived gyral filters in frequency domain. This finding is quite consistent 

with the fact that three hinges are extracted from gyral regions. For the 2-hinge specific 

characteristic features, the magnitude in all frequency bands tend to be relatively low as 

well. From Figure 3.4(b), we can also find out a similar frequency distribution pattern of 

all types of filters learned from different groups based on the data of EMC institution.  
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Figure 3.4. Filter features learned from 1D-CNN model based on data from two 

institutions. (a) BNI; (b) EMC. The frequency distributions for gyral, sulcal, 2-hinge and 

3-hinge filters of both control and patient group. Frequency distribution of filters in 

similar shape are represented by the same color and different colors are used for different 

shape types. 
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Figure 3.5. Separate visualization of filter (gyral, sulcal, 2-hinge) frequency distributions 

in different shapes for each group. (a) BNI; (b) EMC. The parts circled by the dashed box 

with the same color (blue/orange) are results belonging to the same group 

(control/patient). 

In addition, we can observe that the frequency distribution patterns of certain type 

of filter are quite similar for most of the cases in both groups. Considering the individual 

variabilities across institutes, even within a single institute, our result so far is robust 

enough to unveil the different functional roles exhibited by rs-fMRI signals of gyri/sulci 

and 2-hinge/3-hinge in both control and patient groups. Meanwhile, we also put some 

selected original filters in time domain here as can be seen in Figure 3.6. 
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Figure 3.6. Selected original filters of gyri, sulci, 2-hinge and 3-hinge in both control and 

patient group from two institutions. Six representative original filters are selected for 

each type (gyri, sulci, 2-hinge or 3-hinge) in each group (control or patient). Here, the 

color of different filters has a correspondence to that in Figure 3.4 and Figure 3.5.  

 

5. Discussion and Conclusion 

In this work, classification models based on 1D-CNN method are designed and 

applied in differentiating gyral and sulcal or 2-hinge and 3-hinge joint rs-fMRI signals. 

An average classification accuracy of 94.24% for controls, 95.24% for patients or 87.53% 

for controls, 87.72% for patients has been achieved. Further analysis on the internal 

behaviors of the learned models was also performed and differences of filter features in 

frequency domain were observed. Since certain frequency distribution can be used to 

represent certain pattern of functional features, the observed results in Section 4 are 

meaningful to unveil functional roles of gyri/sulci and 2-hinge/3-hinge rs-fMRI joint 

signals. Specifically, 3-hinges on gyri with lower rhythms might play major roles in 

reflecting long distance communication and performing global functional integration, 

while sulci with higher rhythms tend to be in charge of local information processing and 

are critical for segregation of brain areas. Using rs-fMRI data for autism study as a test 

bed, we can also conclude that the observed differences not only exist in healthy 

population, but also in autism disease group.  

In terms of the frequency distribution of the filters of certain type (gyri, sulci, 2-

hinge or 3-hinge), we have not observed an obvious difference existing between healthy 

controls and autism patients so far. Following this line of study, further work can be 
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extended and enhanced in more specific brain anatomical areas such as superior frontal 

gyrus and central sulcus for deeper investigations of possible mechanisms of functional 

segregations of gyri and sulci or 2-hinge and 3-hinge. Moreover, exploration of the 

differences between control and patient group can also concentrate on some specific 

predefined anatomical areas and analyze separately instead of focusing on the whole 

cortical surface together. Another interesting extension to the present work would be 

applying more powerful representation learning models with optimized architecture by 

using neural architecture search (NAS).  

  



 

68 

 

 

CHAPTER 4 

OPTIMIZING CNN MODEL FOR FMRI SIGNAL CLASSIFICATION VIA ADANET-

BASED NEURAL ARCHITECTURE SEARCH3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
3 Haixing Dai*, Fangfei Ge*, Qing Li, Wei Zhang and Tianming Liu. “Optimize CNN Model for fMRI 

Signal Classification via AdaNet-based Neural Architecture Search.” Submitted to International 

Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2019. 
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1. Abstract 

The content in this chapter is a follow up work of Chapter 3. The work in 

previous chapter has explored the different functional roles among gyral, sulcal and 2-

hinge and 3-hinge rsfMRI signals via 1D-CNN models from functional perspective. Here, 

I extend my previous work in terms of model architecture by optimizing the framework 

of CNN models using a neural architecture search (NAS) system.  

Recent studies showed that convolutional neural network (CNN) models possess 

remarkable capability of differentiating and characterizing fMRI signals from cortical 

gyri and sulci. In addition, visualization and analysis of the filters in the learned CNN 

models suggest that sulcal fMRI signals are more diverse and have higher frequency than 

gyral signals. However, it is not clear whether the gyral fMRI signals can be further 

divided into sub-populations, e.g., 3-hinge areas vs 2-hinge areas. It is also unclear 

whether the CNN models of two classes (gyral vs sulcal) classification can be further 

optimized for three classes (3-hinge gyral vs 2-hinge gyral vs sulcal) classification. To 

answer these questions, in this chapter, we employed the AdaNet framework to design a 

neural architecture search (NAS) system for optimizing CNN models for three classes 

fMRI signal classification. The core idea is that AdaNet adaptively learns both the 

optimal structure of the CNN network and its weights so that the learnt CNN model can 

effectively extract discriminative features that maximize the classification accuracies of 

three classes of 3-hinge gyral, 2-hinge gyral and sulcal fMRI signals. We evaluated our 

framework on the Autism Brain Imaging Data Exchange (ABIDE) dataset, and 

experiment results show that our framework can obtained significantly better results, in 

terms of both classification accuracy and extracted features. 
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2. Background and Motivation 

The human cerebral cortex is characterized by highly convoluted regions which 

fold themselves into gyri and sulci [3, 4, 43, 45, 83]. Many previous literature studies 

have reported the fundamental structural and functional differences between gyri and 

sulci by analyzing multimodal neuroimaging data. For instance, a recent study used 

convolutional neural networks (CNN) to differentiate and characterize fMRI signals 

extracted from gyri and sulci [38, 39], and it turned out that sulcal fMRI signals are more 

diverse and have higher frequency than gyral signals. Detailed analysis and visualization 

of the filters in the learnt CNN models suggest that the cerebral cortex might be 

bisectionally segregated into two fundamentally different functional units of gyri and 

sulci [38, 39]. In those studies, the powerful CNN model played a major role in extracting 

meaningful filter features that contributed to the differentiation of gyral and sulcal fMRI 

signals, demonstrating the great promise of using deep learning methods for fMRI data 

analysis and neuroscience discovery research.  

Though the studies in [38, 39] significantly advanced our fundamental 

understanding of the intrinsic difference between gyri and sulci, there are several key 

unanswered questions. First, it is not clear whether the gyral fMRI signals can be further 

divided into sub-populations, e.g., 3-hinge areas (where 3 different gyral crests meet) [86] 

vs 2-hinge areas, as illustrated in the blue and red areas in Figure 4.1, the detailed 

parcellation criteria of which can refer to Section 3.3 in Chapter 3. It has been reported 

that those 3-hinge gyral areas have significantly higher fiber densities than 2-hinge areas 

(measured by diffusion tensor imaging (DTI) data) [86], and thus it is reasonable to 

hypothesize that those 3-hinge gyral regions might play different functional roles from 2-
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hinge gyral areas. Hence, it will be of interest to examine the three classes fMRI signal 

classification problem, that is, 3-hinge gyral vs 2-hinge gyral vs sulcal signal 

classification. In addition, it is unclear whether the CNN models of two classes (gyral vs 

sulcal) classification used in prior studies [38, 39] can be further optimized for three 

classes (3-hinge gyral vs 2-hinge gyral vs sulcal) classification, e.g., in terms of the 

neural network structures and hyper-parameters. Since existing deep learning networks 

such as CNNs have been manually designed and their structures and hyperparameters 

could be substantially optimized and improved via the recent neural architecture search 

(NAS) framework [105, 106]. It is reasonable to hypothesize that the optimized CNN 

networks could better represent and extract more meaningful features from real fMRI 

dataset.          

 

Figure 4.1. Illustration of the three classes classification problem. (a) Illustration of gyral 

net across the cortical surface (red curves) and 3-hinge gyri center (dark green sphere).  

(b) Parcellation of the cortex into three classes of 3-hinge gyri (green), 2-hinge gyri (red) 

and sulci (blue).  The left and right figures are mirrored and both from left hemisphere. 

To address the abovementioned questions and test above hypotheses, in this 

chapter, we designed a novel neural architecture search (NAS) system to optimize CNN 

models for three classes fMRI signal classification based on the AdaNet framework 
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[105]. The key idea is that the AdaNet framework can adaptively learn both the optimal 

structure of the CNN network and its weights so that the learnt CNN model can 

effectively extract discriminative features that maximize the classification accuracies 

among three classes of 3-hinge gyral, 2-hinge gyral and sulcal fMRI signals. Based on 

these optimized CNN model and extracted features, we are then able to test the 

abovementioned hypotheses about three classes classification and CNN network 

optimization. To that end, we evaluated our framework on the public available Autism 

Brain Imaging Data Exchange (ABIDE) dataset, and extensive experiments showed that 

our framework can obtained significantly better results, in terms of both classification 

accuracy and extracted meaningful features. 

 

3. Methods 

3.1 Data description and preprocessing 

Experimental data used in this study were downloaded from the publicly available 

Autism Brain Imaging Data Exchange (ABIDE) II.  The ABIDE was established for 

discovery science on the brain connectome in autism spectrum disorder (ASD). Here, we 

used the dataset from BNI (Barrow Neurological Institute) as our test bed. According to 

manually checked preprocessing results, 58 subjects (29 control and 29 patients) from 

BNI are considered as high quality and thus selected. Please refer to 

http://fcon_1000.projects.nitrc.org/indi/abide/abide_II.html for detailed information. 

Then we randomly selected 20 samples of these 58 subjects for our experiment. 

Preprocessing for the resting state fMRI (rsfMRI) data were performed using the FSL 

software tools, including skull removal, motion correction, spatial smoothing, temporal 
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pre-whitening, slice time correction, global drift removal, and linear registration to the 

Montreal Neurological Institute (MNI) standard brain template space, which were all 

implemented by using FSL and other tools based on FreeSurfer.  

3.2 Neural architecture search (NAS) and AdaNet 

A key step in designing a multi-layer deep neural network for a specific task is the 

selection of the network’s architecture, e.g., the number of layers and the number of 

neurons in each layer. Though the CNN model for two classes classification in [38, 39] 

has achieved promising results, its number of layers and the number of neurons in each 

layer are decided by manual experience and thus they might not be optimal in various 

senses. Recently, a powerful framework of neural architecture search (NAS) has been 

proposed in the literature [106], and several NAS systems have shown promising results 

in traditional image classification problems [105-107].     

In this chapter, we adopt the recently published AdaNet framework [105] as our 

NAS engine. In the AdaNet framework, instead of enforcing a pre-defined neural 

network architecture with a fixed network complexity, the system adaptively searches 

and learns the appropriate network architecture for a specific task. Briefly, the AdaNet 

starts with a simple linear model (illustrated in Figure 4.2), and then the system gradually 

augments the network with more neurons and additional layers, as much as needed. This 

incremental search process is the core of the neural network search and optimization 

process. Naturally, the addition of subnetworks (as shown in Figure 4.2) depends on their 

complexity and is directly constrained by the learning criteria. Importantly, it has been 

shown that the AdaNet’s optimization process is strongly convex and thus it is 

guaranteed to converge to a unique global solution [105]. Thus, based on the AdaNet 
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NAS engine, our framework will optimize CNN model with the objective of maximizing 

classification accuracy among three classes, as illustrated in Figure 4.2. The NAS 

framework is specifically explained in the figure and its legend.      

 

Figure 4.2. Illustration of our NAS framework based on AdaNet. The time series of  

fMRI data is considered as the input of our model. Then we optimize the neural network 

structures with the objective of maximizing the classification accuracy among three 

classes of sulci, 2-hinge gyri, and 3-hinge gyri fMRI signals. The gray arrow illustrates 

the neural structure search step. Additional implementation details are provided in 

Section 3.3.   

More specifically, in this framework, we used the momentum as the optimizer of 

the AdaNet based NAS. Momentum is the gradient decent with a short-memory as 

follows: 

z𝑘+1 = 𝛽𝑧𝑘 + ∇𝑓(𝑤𝑘) (4.1) 

w𝑘+1 = 𝑤𝑘 − αz𝑘+1 (4.2) 

In this equation, when the learning rate (𝛽) equals 0, we recover the gradient 

decent. But for 𝛽 = 0.99, this appears to be the boost we need. So, our iterations regain 

that speed and boldness it lost, speeding to the optimum with a renewed energy. Based on 
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the procedures above, the NAS framework is implemented based on the Auto-ML system 

[8], which is summarized as follows (Table 4.1): 

Table 4.1. Algorithm for NAS 

Algorithm1. Neural Architecture Search (NAS) 

Input: S is the initial network, N as the iteration number. 

Output: 𝑆𝑏𝑒𝑠𝑡 

𝑆𝑏𝑒𝑠𝑡 ⟵ 0 

for (𝑖 = 0 to 𝑁 ) 

           𝑆1, 𝑆2 ⟵ GetNewNetwork(𝑆) 

           𝑤1, 𝑤2 ⟵ EvaluaeNetwork(𝑆1, 𝑆2) 

           if 𝑤2 is better than 𝑤1 then 

                    𝑆𝑏𝑒𝑠𝑡_𝑖 ⟵ 𝑆2, 𝑤𝑏𝑒𝑠𝑡_𝑖 ⟵  𝑤2 

           else   𝑆𝑏𝑒𝑠𝑡_𝑖 ⟵ 𝑆1, 𝑤𝑏𝑒𝑠𝑡_𝑖 ⟵  𝑤1 

           𝑆∗ ⟵ GetNewNetwork(𝑆) 

           𝑤∗ ⟵ EvaluaeNetwork(𝑆∗) 

           if 𝑤∗ is better than 𝑤𝑏𝑒𝑠𝑡_𝑖 then 

                    𝑆𝑏𝑒𝑠𝑡_𝑖 ⟵ 𝑆∗, 𝑤𝑏𝑒𝑠𝑡_𝑖 ⟵  𝑤∗ 

           else   return 𝑆𝑏𝑒𝑠𝑡_𝑖 

end 

return(𝑆𝑏𝑒𝑠𝑡_𝑁) 

 

To be more specific, we have two options to generate a new network: for the first 

option, we can generate the new network by adding a connection between the units in 

layer 𝑖 and the units in layer 𝑖 − 1; the second option is generating a new network by 

adding a deeper layer. The option selection is based on the best reduction of the current 

value of the optimal function. These options are also illustrated in Figure 4.2.  

3.3 Implementation details 

In this work, the designed 1D CNN framework based on NAS took one 

dimensional rsfMRI time series data as input, which were normalized before training or 

testing. Here, each time series of length 115 was extracted according to its corresponding 

anatomical parcellated location as explained in Figure 4.1, after which it will be assigned 

a label as sulci, 2-hinge gyri or 3-hinge gyri. After fMRI signal extraction and labeling, 
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the size of training samples for a single ABIDE subject is around 80,000-120,000. For all 

classifiers, 70% of the extracted fMRI signals were used for training, while the remaining 

30% fMRI signals were used for testing. Specifically, 20 subjects (10 healthy controls 

and 10 patients) from ABIDE II dataset were randomly used as our test bed and a 

corresponding model was trained for each individual subject. In our NAS framework 

based on Adanet, the base network was initialized with a simple CNN with only one 

convolutional layer and one max-pooling layer followed by one global average pooling 

layer and a dense layer for classification output. For hyperparameters, the filter length 

was set as 64, the kernel size as 32, the learning rate as 0.05, the maximum training step 

as 8000, and the batch size as 5400. Besides, the Adanet iteration was set as 3. After three 

iterations, we can obtain the optimized CNN model based on the initialized CNN. 

 

4. Results 

4.1 Classification results 

To evaluate the robustness of our proposed method, we not only implemented a 3-

class classification, but also implemented a 2-class classification experiment based on 

sulcal and gyral fMRI signals. Figure 4.3 and Figure 4.4 show the classification results of 

2-class and 3-class classifications based on testing data. We can observe that, for 2-class 

classification, the testing accuracy can be improved by 4~5% by using NAS framework 

compared with the results from CNN model without NAS optimization. Meanwhile, for 

3-class classification, the testing accuracy can be improved by approximately 10%, which 

is a truly significant improvement achieved by NAS. 



 

77 

 

Figure 4.3. Testing accuracy for 10 randomly selected subjects in 2-class classification. 

The orange bars represent the accuracy of models via NAS framework and the blue bars 

represent the accuracy of CNN model without NAS optimization. 

 

Figure 4.4. Testing accuracy for 20 randomly selected subjects in 3-class classification. 

The orange bars represent the accuracy of models via NAS framework and the blue bars 

represent the accuracy of CNN model without NAS optimization. 

To further examine the testing accuracy differences in CNN models with and 

without NAS optimization, we displayed the confusion matrices in 3-class classifications, 
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as shown in Fig. 5. From both matrices, we can observe that sulcal fMRI signals can be 

differentiated much better than 2-hinge and 3-hinge signals since the anatomical location 

of 2-hinge and 3-hinge regions on cortical surface all belong to gyri. In CNN model 

without optimization, about half of the 3-hinge signals were classified as 2-hinge. 

However, the differentiation accuracy between 2-hinge and 3-hinge fMRI signals can be 

largely improved by CNN model optimized by the NAS framework, demonstrating the 

effectiveness of our framework based on NAS in improving the classification power of  

CNN models. This result also suggests that 2-hinge gyri and 3-hinge gyri might have 

quite different functional roles, as we hypothesized in the introduction section. 

 

                        (a)                                                             (b) 

Figure 4.5. The confusion matrix for average testing accuracy. The left one is the result of 

models using NAS framework. The right one is the result of CNN without NAS 

optimization. T in the bracket means the ground truth of a label and P in the bracket is the 

prediction result. 

4.2 Analysis of learnt filters in NAS-optimized CNN 

In addition to the classification result in Figures 4.3-4.5, we also examined the 

different types of filters learnt in the CNN model to further understand their frequency 
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characteristics. In Figure 4.6, we visualize three types of filters (sulcal, 2-hinge, 3-hinge) 

using their time series patterns. Specifically, we can observe that for sulcal filters, there 

exists several frequency distribution patterns, and most of them tend to exhibit relatively 

high magnitude, as shown in the left side of Figure 4.6. In gyral filters, we find that the 

magnitudes in all frequency bands are lower compared with those in sulcal filters, which 

agrees with literature report [38]. In 3-hinge filters, most frequency bands exhibit a 

relatively low magnitude and a flat tendency compared with those in 2-hinge filters. To 

better understand the extracted filters, we also mapped the GA (Global Average) layer 

activation back to the corresponding cortical surfaces, as shown in Figure 4.7. 

Interestingly, from the mapping results of sulcal filters, most of the sulcal regions 

presented a higher activation, while for those corresponding to 2-hinge and 3-hinge 

filters, 2-hinge and 3-hinge regions tended to have a higher activation accordingly which 

also can be seen from Figure  4.7. 

 

Figure 4.6. Visualization of filter signals of sulci, 2-hinge gyri and 3-hinge gyri. 
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Figure 4.7. Global Average (GA) layer activation corresponding to sulcal, 2-hinge and 3-

hinge filters. Here, we randomly selected two mapping results for each type of signal 

filter to present. For each type of signal filter, two representative regions with higher 

activations (blue or green colors) are circled and zoomed-in for better visualization. 

 

5. Discussion and Conclusion 

In this chapter, we presented a novel neural architecture search framework to 

optimize CNN models for three classes fMRI signal classification by using AdaNet as 

NAS engine. Our major methodological contribution is that AdaNet-based NAS 

framework can adaptively learn both the optimal structure of the CNN network and its 

weights so that the learnt CNN model can effectively extract discriminative features with 

the objective of maximizing the classification accuracies among three classes of 3-hinge 

gyral, 2-hinge gyral and sulcal fMRI signals. We evaluated the NAS-optimized CNNs on 
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the public available ABIDE II dataset, and experimental results showed that our 

framework can obtain significantly better classification accuracy. Also, visualization and 

interpretation of the extracted filters by NAS-optimized CNNs suggested neuro-

scientifically meaningful results. Overall, our work demonstrated the promise of using 

NAS for optimizing deep learning models of fMRI data and offered novel insights into 

the structure-function relationships between cortical folding (e.g., 2-hinge gyri and 3-

hinge gyri) and brain function. 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

 This dissertation summarizes the major research work during my doctoral study. 

To conclude, the dissertation contributes to the analysis of cortical 3-hinge gyral joint 

from both structural and functional perspective. For 3-hinge structural analysis (Chapter 

2), the experiment results consistently show that DTI-derived fiber densities in 3-hinge 

regions are much higher than those in 2-hinge regions, suggesting that during gyrification 

gyral regions with higher concentrations of growing axonal fibers tend to form 3-hinge 

gyri. The proposed integrative approach combining neuroimaging data analysis and 

computational modeling appears effective in probing a plausible theory of 3-hinge gyri 

formation and providing new insights into structural and functional cortical architectures 

and their relationship. For 3-hinge functional analysis (Chapter 3-4), it investigates and 

confirms different functional roles of neural activities under resting state in gyri and sulci, 

as well as 2-hinge and 3-hinge gyral folding joints in both healthy subjects and autism 

groups. Specifically, Chapter 4 presents a novel neural architecture search (NAS) 

framework to optimize CNN models in Chapter 3 by using AdaNet as NAS engine. 

Corresponding experiment results showed the NAS framework can obtain significantly 

better results, in terms of both classification accuracy and extracted features. 

The future work of this research topic can be further investigated in the following 

directions. First, from the structural perspective, the typical 3-hinge brain anatomical 

pattern can potentially serve as landmarks to improve cortical registration performance 
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since conventional image registration methods based on anatomical morphology could 

hardly align such diverse cortical patterns at a fine-grained resolution. Therefore, some 

related work can be proposed following this line of research to further explore the unique 

and useful role of 3-hinge in cortical registration. Second, for the functional study of 3-

hinge gyral joints in Chapter 3, further work can be extended and enhanced in more 

specific brain anatomical areas such as superior frontal gyrus and central sulcus for 

deeper investigations of possible mechanisms of functional segregations of gyri and sulci 

or 2-hinge and 3-hinge. Moreover, exploration of the differences between control and 

patient group can also concentrate on some specific predefined anatomical areas and 

analyze separately instead of focusing on the whole cortical surface together. 
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